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SUMMARY 

This report gives a theoretical basis and example calculations that demonstrate the 
relationship between the Matched Filter Theory approach to the calculation of time- 
correlated gust loads and Phased Design Load Analysis in common use in the aerospace 
industry. The relationship depends upon the duality between Matched Filter Theory and 
Random Process Theory and upon the fact that Random Process Theory is used in Phased 
Design Loads Analysis in determining an equiprobable loads design ellipse. Extensive 
background information describing the relevant points of Phased Design Loads Analysis, 
calculating time-correlated gust loads with Matched Filter Theory, and the duality between 
Matched Filter Theory and Random Process Theory is given. It is then shown that the time 
histones of two time-correlated gust load responses, determined using the Matched Filter 
Theory approach, can be plotted as paramemc functions of time and that the resulting plot, 
when superposed upon the design ellipse corresponding to the two loads, is tangent to the 
ellipse. The question is raised of whether or not it is possible for a paramemc load plot to 
extend outside the associated design ellipse. If it is possible, then the use of the 
equiprobable loads design ellipse will not be a conservative design practice in some 
circumstances. 

1 



TABLE OF CONTENTS 

INTRODUCTION 

BACKGROUND 

Phased Design Loads Analysis and the Equiprobable 
Loads Design Ellipse 

Normalized Design Ellipse 

Matched Filter Theory Approach to Gust Loads Analysis 

Example Calculations Of Time-Correlated Gust Loads Using 
Matched Filter Theory Approach 

Duality Between Matched Filter and Random Process Theories 

RELATIONSHIP BETWEEN MFT APPROACH AND 
PHASED DESIGN LOADS ANALYSIS 

Theore ti ca I Basis 
I 

Example Calculations 

CONCLUDING REMARKS 

REFERENCES 

Page 

3 

10 

12 

14 

16 

24 

25 

2 



INTRODUCTION 

An aircraft structure must be designed to withstand the loads it is expected to encounter 
during its lifetime. In some cases the loading conditions can be modeled deterministically. 
Specific maneuvers, takeoff and landing, and pressurization cycles are examples. 
Atmospheric turbulence (gust loading), however, is a random process modeled statistically 
as a Gaussian process. Ideally, loads analysts would like to know the gust load 
distributions throughout the aircraft as specific functions of time so that proper 
combinations of loads can be analyzed. However, since only the statistical characteristics 
of the turbulence are known, as described by the gust velocity power spectral density 
function, only the likely combinations or phasing of loads can be determined. This is 
referred to as Phased Design Loads Analysis (PDLA). 

The Statistical Discrete Gust (SDG) method had been developed [ 11 as a candidate method 
for analyzing aircraft for gust loads. The method determines worst-case gust loads and the 
corresponding critical gust profiles that produce the responses. Its potential advantages 
over Power Spectral Density (PSD) methods, such as PDLA, are that the loads it produces 
are time-correlated, and it is applicable to nonlinear systems. Its implementation involves 
an extensive search procedure that, although simplified for linear systems, can be time 
consuming. 

During the course of a NASA evaluation of a claimed "overlap" between SDG and PSD 
methods, a new method for calculating maximum and time-correlated gust loads for linear 
systems was discovered [2]. The method is based upon a new way of interpreting the 
Matched Filter principle from radar theory and can obtain the maximum and time-correlated 
responses as well as the critical gust profiles through direct calculation instead of through a 
search. It was further found that there was a duality between the Matched Filter Theory 
(MFT) and Random Process Theory (RPT) results, upon which the PSD methods of gust 
analysis are based, so that identical results can be obtained directly through methods of 
RlT. This duality also allows a relationship to be established between MFT and PDLA. 
The present report describes this relationship by first outlining the pertinent aspects of 
PDLA and the MFI'/RPT duality, and then giving the analytical basis for the relationship 
with some calculated examples. 
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BACKGROUND 

Phased Design Loads Analysis and The Equiprobable Loads Design Ellipse 

In Phased Design Loads Analysis (PDLA), the turbulence is assumed Gaussian and the 
vehicle structure is assumed linear. The response of the structure to the turbulence is then 
also Gaussian. Any two gust responses, y and z (e.g., bending moment and shear force at 
some wing station), are related by a bivariate or joint probability density function [3], 

where og is the gust velocity root-mean-square (RMS), the xs are the ratios of the indicated 
response RMS to the gust RMS, and are given by 

where is the von Karman 
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spectrum and R(o) is the load frequency response 

(2) 

function. 
Note that the von Karman spectrum is defined to be consistent with the use of the 2n factor 
in the inverse Fourier transform. The correlation coefficient (to be defined later) between 
the two response quantities is pzy. By assigning values to the probability density P(y,z), 
contours of constant joint probability density are defined in the y - z plane by the 
exponential argument and are in the shapes of ellipses. Thus, for a given P(y,z), all 
combinations of y and z lying on the associated ellipse have an equal probability of 
occurring. The ellipse is known as the "equiprobable loads design ellipse", or just "design 
ellipse", and is depicted in Figure 1. For incremental gust loads about a 1-G flight 
condition, the ellipse is centered at the 1-G load values. The ellipse is bounded by a 
rectangle, tangent to the ellipse at the circled points, whose sides are determined, for design 
envelope analysis, by 

'design = Y ,  G _+ u, AY 
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Figure 1. Equiprobable Loads Design Ellipse 

where Uc is the design gust velocity. The value of P(y,z) is chosen to correspond to the 
desired U, [4]. Since every possible design load combination (of which there are an 
infinite number) cannot be checked, the ellipse is circumscribed by a "design octagon" and 
the load combinations defined by the comer points (A, B, C, D, E, F, G, and H) are 
checked and are assumed to provide conservative values for the design stresses. An 
excellent summary of this and other aspects of current practices in designing for gust loads 
is given by Moon in Reference 4. 

LOAD 
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Normalized Design Ellipse 

The equation for the ellipse can be written in terms of normalized loads as [5 ] ,  

where w = Y/(V&~) and 6 = z/(U&,) are the normalized load coordinates. The normalized 
ellipse, shown in Figure 2, is bounded by a square that is tangent to the ellipse at the circled 
points with sides at w = f 1 and = k 1. The correlation coefficient is defined, 

(4) 
2 w2 - 2pzyvr + r = (1 - Piy) 7 

The correlation coefficient may assume a value between +l and -1. When its magnitude is 
unity, the ellipse collapses to a straight line and indicates that the two loads are completely 
correlated. The maximum magnitudes of both occur together. If the magnitude of the 
correlation coefficient is zero, the ellipse becomes a circle and indicates that the loads are 
uncorrelated. The maximum magnitude of one occurs when the other is zero. As before, 
the ellipse is bounded by a design octagon. When the value of one of the normalized loads 
is at its maximum value of unity, the value of the other is equal to pzy. This normalization 
is convenient since it eliminates dependence upon the actual gust intensity or the particular 
design gust velocity. Such factors can be applied to the normalized phased loads to obtain 
load magnitudes for further analyses. 
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Figure 2. Normalized Equiprobable Loads Design Ellipse 
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Matched Filter Theory Approach to Gust Loads Analysis 

The original objective of Matched Filter Theory (MFT) was the design of an electronic filter 
such that its response to a known input signal was maximum at a specific time [6]. The 
matched filter is designed so that its unit impulse response is proportional to the known 
excitation, shifted and reversed in time, 

where K is an arbitrary constant, b is the time shift (also the time at which the response to 
xy(t) will be maximum), and xy(t) is the known excitation. The above simple relation can 
be inverted, 

h,(t) = KXy(-t + to), (6a) 

to give the excitation that will maximize the response of a filter of known dynamics, 
characterized by hy(t), at time &,. 

In the MFT approach to gust load calculations [2] one considers the combined 
turbulence/aeroelastic system to be the known filter (as shown in Figure 3). Taking the 
constant, K, to be the root-mean-square (RMS), o h y  , of the unit impulse response of the 
filter results in a constraint that the excitation waveform, xy(t), have an RMS of unity. The 
waveform contains some spectral information that, when passed through the turbulence 
part of the combined turbulence/aeroelastic system "filter", produces the critical gust 
profile. The response of output quantity y is (from Ref. 2), 

-o 

whose maximum is 

The response of some other output quantity, z, to the excitation xy(t) (said to be "matched 
to y" since it is obtained from the unit impulse response of output y) is, 

-.OD 

where o is the RMS of the unit impulse response of output z, and X,(o) is the Fourier h, 
transform of the excitation, xZ(t), matched to output z. Responses to xZ(t) are constructed 
in a similar fashion. 

The response of a particular output to any excitation other than its matched excitation will 
never exceed the maximum response to the matched excitation. So, 
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Example Calculations of Time-Correlated Gust Loads 
Using Matched Filter Theory Approach 

Example calculations of time-correlated gust loads using the MFT approach are shown in 
Figure 4, taken from Reference 2. The calculations were performed for a model of the 
NASA DAST ARW-2 vehicle in one-dimensional, random, vertical turbulence with a von 
Karman power spectrum with unit RMS gust velocity. In the aeroelastic model, 8 flexible 
modes are present, as well as plunge and pitch. The excitation used for these calculations 
was matched to the wing root bending moment. The figure shows bending and torsion 
moments at the wing root and bending moment at a station near the wing tip. Also shown 
is the critical gust profile obtained as an intermediate step in the procedure. The lag time, ti, 
(see Eqns. 6a and b), chosen at a point where the magnitude of the unit impulse response 
of the root bending moment has decayed to a small fraction of its largest magnitude, is 10 
seconds. The mot bending moment response to the matched excitation is maximum at this 
point. The other two responses are correlated in time with the "matched' root bending 
moment response. They are not maximum at t = 10 seconds, although the resolution in the 
figure does not permit this to be visible. Also, the "matched" mot bending moment 
response is symmemc about the t = 10 second point whereas the other two time-correlated 
responses are not. The similarity between these plots and auto- and cross-correlation 
functions of FWT led the authors of Ref. 2 to establish a duality between 
approaches to calculating time-correlated gust loads. 

and RPT 
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Figure 4, Example Calculations Using iMatched Filter 
Theory Approach (from Ref, 2) 
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Duality Between Matched Filter and Random Process Theories 

The duality between MFT and RPT can be seen analytically by substituting the Fourier 
transforms of the matched excitation waveforms as expressed in Eqn. 6b (recalling that the 
constant K is set equal to the RMS of the corresponding unit impulse response) into the 
expressions for the responses of the system to the waveforms as written in Eqns. 7 and 9. 
The results are 

(12) 
iW(t - t.,) 

-0 

and 
r 1 

The product H y ( ~ ) H ; ( ~ )  is the auto-PSD function for the response of output y and the 
product J&(w)H$(w) is the cross-PSD function for the responses of outputs z and y. Thus 
the terms in the brackets in Eqns. 12 and 13 are, respectively, the auto- and cross- 
correlation functions, R,(t - to) and &,(t - to). The responses can then be written, 

and 
I q t >  = - &,(t - to) . 

Oh, 

Further, the maximum value of % at t = to is 2 , and thus IYY(~)I, is o , which is in 
hY h, 

agreement with Eqn. 8. 

The utility of this duality is that these responses are obtained by calculating inverse Fourier 
transforms of the PSD functions of the combined turbulence/aeroelastic system without 
constructing representative frequency response functions, as required in the MFT 
approach. As stated in Ref. 2, " Thus RPT, normally employed to determine the statistical 
properties of random processes, may also be employed to obtain certain deterministic 
responses provided that they are interpreted as responses to matched excitation waveforms 
as described by MF"." Figure 5, again taken from Ref. 2, shows comparisons of 
calculations of time-correlated gust loads by the two methods. The slight differences are 
attributed to computational error. In the remainder of this report, references to results 
obtained from the MFT approach shall be understood to mean that the results are also 
obtainable from the RPT approach as well. 
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RELATIONSHIP BETWEEN MFT APPROACH AND 
PHASED DESIGN LOADS ANALYSIS 

Theoretical Basis 

Let the response of output z to the excitation matched to y, Eqn. 15, be normalized by the 
maximum possible response of z (Eqn. 1 l), oh . This gives a general correlation 
coefficient that is a function of time, 

where z = t - to. The frequency response function, Hy(o), of the output y of the combined 
turbulence/aeroelastic system filter is a combination of a turbulence frequency response 
function, G(o), and the aeroelastic response function, Hy(o). Thus 

Hy(o) = G(o)H,(o), (17) 
and G(o)G*(o) = Og(o), which is the turbulence PSD (the squared magnitude of the 
turbulence frequency response function). Multiplying Eqn. 2 by ot, and evaluating the 
integral, 

Analogous expressions are true for output z. Substituting Eqns. 17 and 18 (and the 
analogous equations for output z) into Eqn. 13 yields, using Eqn. 16 above, 

In terms of Eqn. 9, 
00 

pzy(z) = &I XL<w)X,(o) e iwr do. 

Note that when z = 0 ( t = b ), Eqn. 19 becomes identical to Eqn. 5. Thus, 

Similarly, 
Pzy(0) = Pzy * 

The general correlation coefficients of Eqns. 16 and 22, which can now be interpreted as 
normalized responses to the excitation matched to y, may be plotted as parametric functions 
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Figure 6. Normalized Design Ellipse With 
Parametric Load Plot 

of time with the normalized design ellipse. Figure 6 shows, in a general way, how the plot 
would appear. The plot grows from zero, oscillating to a point M (at t = to, z = 0) where it 
is tangent to the ellipse. It then decays back toward zero. The ( ~ , c )  coordinates of point 
M are (1, p,,), and correspond to the design value of y and the "phased" value of z. 
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Example Calculations 

The ellipse and parametric load plot shown earlier in Fig. 6 were simplified for clarity and 
were purely hypothetical. In practice, such a wide ellipse and spiraling load plot would be 
indicative of loads that were not very highly correlated and had a limited range of frequency 
content. In the following figures are shown normalized design ellipses and normalized 
load time histories, some of which correspond to the examples presented previously in Fig. 
4. Figure 7 shows wing root torsion and bending moment responses to the excitation 
matched to wing root bending moment (i.e., a combination of the responses depicted in the 
top two boxes at the right of Fig. 4). The value of the correlated response (torsion) is 
-0.843 when the matched response (bending) is unity. Thus, the value of the correlation 
coefficient used to construct the ellipse is, then, -0.843. 

Although not clear in the figure, the load plot starts at zero and oscillates with increasing 
amplitude nearly on a straight line, becoming tangent to the ellipse, then decaying back 
toward zero. The frequency with which the plot oscillates corresponds to the short period 
mode and is readily visible in the major oscillations of the response shown in Fig. 4. There 
is a high degree of correlation (p = -0.843) between the loads since both respond strongly 
to the short period content of the excitation, which is matched to root bending. Torsion, 
however, is less responsive to the short period frequency, and more responsive to higher 
frequencies than is the bending. Thus one observes the slightly lower magnitude (0.843) 
of the torsion load and lateral deviations (in the direction of the torsion axis) from a straight 
line in the load plot. 
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Example Calculations (cont.) 

Figure 8 shows wing root torsion and bending moment responses to the excitation matched 
to wing root torsion moment. As in Fig. 7, the value of the correlated response (bending) 
is -0.843 when the matched response (torsion) is unity. Again, there is a high degree of 
correlation between the loads in the lower frequency, short-period-dominated response. 
The deviations from a straight line resulting from the higher frequency, elastic-mode- 
dominated portion of the responses are more pronounced than in Fig.7. This occurs 
because the excitation, matched to torsion in this case, has more higher frequency content 
than the excitation matched to bending. Thus, the torsion responds more readily and 
reaches its maximum value. 
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Example Calculations (cont.) 

Figure 9 shows the paramemc load responses for wing root bending moment and wing tip 
bending moment for the excitation matched to mot bending moment (Le. a combination of 
the responses depicted in the top and bottom boxes at the right of Fig. 4). The correlation 
coefficient for constructing the ellipse in this case is 0.103. This relatively low value 
results in the ellipse's being much closer to a circle than in the previous case. It is 
somewhat surprising, since the load plot is nearly a straight line. However, the excitation 
producing these responses is that which is matched to mot bending, and mot bending is 
more responsive to the short period frequency than is tip bending moment. So, even 
though the major oscillations of the load plot are at the short period frequency, the relatively 
unresponsive tip bending moment does not reach anywhere near its potential maximum, 
resulting in the low value of the correlation coefficient. The drastic effects of an excitation 
matched to an output not highly responsive to the short period frequency can be seen in the 
next figure. 
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Example Calculations (concl.) 

Figure 10 shows parametric load responses for foot and tip bending moments resulting 
from the excitation matched to tip bending moment. The lower frequency oscillations are 
still alligned toward the foot bending moment axis as in all the other cases. However, the 
degree of lateral deviations (along the tip bending moment axis) is quite pronounced. The 
tip bending moment is clearly more responsive to the higher frequency content of its 
matched excitation than to the lower frequency content (short period) of the excitation 
matched to root bending. 

The example plots show that some of the loads may appear highly correlated (i.e. have 
correlation coefficients near f 1 and their parametric plots falling nearly on a straight line) 
in the lower frequency, short-period-dominated components if the excitation is matched to 
the output quantity most responsive to the short period frequency. For cases in which the 
excitation is matched to an output that is less responsive to the short period frequency, such 
as in Figs. 8 and 10, the parametric plots appear less correlated, displaying larger lateral 
deviations from a straight line. However, the correlation coefficients need not be very low 
(and, thus, the associated ellipses need not be wide and near-circular) even if the lateral 
deviations are rather sizeable, as in Fig. 8. This raises the question of whether or not it is 
possible for any parametric load plot to extend outside the associated design ellipse. It is 
possible to prove, using Eqns. 10 and 11, that the plots cannot extend beyond the square 
that bounds the normalized design ellipse. However, the authors cannot, as yet, offer a 
proof that the design ellipse bounds the parametric load plot. The limited results presented 
in this report suggest that wide oscillations in load plots are not necessarily accompanied by 
very low correlation coefficients (and thus wide and near-circular ellipses). Nonetheless, 
the ellipses appear to always be sufficiently wide to accommodate the load oscillations. 
The question needs resolution because if the parametric load plots can exceed the ellipse, 
then the use of the equiprobable loads design ellipse is not always a conservative design 
practice. 
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CONCLUDING REMARKS 

This report has given a theoretical basis and example calculations that demonstrate the 
relationship between the Matched Filter Theory approach to the calculation of time- 
correlated gust loads and Phased Design Loads Analysis in common use in the aerospace 
industry. The relationship depends upon the duality between Matched Filter Theory and 
Random Process Theory and upon the fact that Random Process Theory is used in Phased 
Design Loads Analysis in determining an equiprobable loads design ellipse. It was then 
shown that the time histories of two time-correlated gust load responses, determined using 
the Matched Filter Theory approach, can be plotted as parametric functions of time and that 
the resulting plot, when superposed upon the design ellipse corresponding to the two 
loads, is tangent to that ellipse. The point of tangency is the point at which the response to 
which the excitation is "matched" (in the sense of Matched Filter Theory) reaches its 
maximum value. This value is the design value for that load, as used in Phased Design 
Loads Analysis. If the loads are normalized as outlined in the report, this maximum value 
is unity and the value of the time-con-elated response of the second load, corresponding to 
the "phased" value, is equal to the correlation coefficient used to construct the design 
ellipse. The question is raised of whether or not it is possible for a paramemc load plot to 
extend outside the associated design ellipse. If so, then the use of the equiprobable loads 
design ellipse will not be a conservative design practice in some circumstances. 
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